- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Luo, Yuehan (2)
-
Basar, Tamer (1)
-
Gosavi, Abhijit (1)
-
Hu, Jiaqiao (1)
-
Lin, Yixuan (1)
-
Liu, Ji (1)
-
Sandhu, Romeil (1)
-
Wang, Zhaoran (1)
-
Yang, Zhuoran (1)
-
Zhang, Kaiqing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lin, Yixuan; Luo, Yuehan; Zhang, Kaiqing; Yang, Zhuoran; Wang, Zhaoran; Basar, Tamer; Sandhu, Romeil; Liu, Ji (, NeurIPS Optimization Foundations for Reinforcement Learning Workshop)This paper studies a distributed reinforcement learning problem in which a network of multiple agents aim to cooperatively maximize the globally averaged return through communication with only local neighbors. An asynchronous multi-agent actor-critic algorithm is proposed for possibly unidirectional communication relationships depicted by a directed graph. Each agent independently updates its variables at “event times” determined by its own clock. It is not assumed that the agents’ clocks are synchronized or that the event times are evenly spaced. It is shown that the algorithm can solve the problem for any strongly connected graph in the presence of communication and computation delays.more » « less
An official website of the United States government

Full Text Available